UNIVERSITE

Q/WConcordla Brock

UNIVERSITY UT'IWEFSI'I:Y

Observability-Driven Software Engineering

Wahab Hamou-Lhadj Naser Ezzati-Jivan
Concordia University Brock University
Montréal, QC, Canada St. Catharines, ON, Canada

Keynote Presentation

5th International Conference on Wireless, Intelligent, and Distributed
Environment for Communication (WIDECOM)

Windsor, ON, Canada
G October 12,2022

User vs. Operational Data

= User data describes information
about users.

= E.g. social media data, user
preferences, geo-location data,
Images, etc.

= Applications include marketing
campaigns, fraud detection, image
recognition, etc.

User vs. Operational Data

= QOperational (machine) data
describes information about a
system (or a machine)

» |tis collected automatically from
devices, IT platforms, applications
with no direct user intervention.

= Useful for diagnosing service
problems, ensuring reliability,
detecting security threats,
Improving operations, and so on.

b———"’

Operational Data for Software-
Intensive Systems

= The proper functioning of software-intensive systems
relies heavily on operational data to diagnose and
prevent problems.

= New trends in SW dev. make this
challenging:
= Highly distributed and parallel systems
= Micro-service architectures
= Virtualisation and containerization
= Device connectivity and loT
= Cyber physical systems
= Intelligentand autonomous systems

= Agile, DevOps, and continuous
delivery processes

u——'—'

Operational Data for Software-
Intensive Systems

= The proper functioning of software-intensive systems

relies heavily on operational data to diagnose and
prevent problems.

1+ We need better runtime system analysis and fault diagnosis and
prediction methods that provide full visibility of a system’s internal
states.

IVIIvVI U Oul vVivoe Gl uvlilitvuiLlul vo

= Virtualisation and containerization

= Device connectivity and loT

= Cyber physical systems

= Intelligentand autonomous systems

= Agile, DevOps, and continuous
delivery processes

b———"f

Software Observability

= |n control theory:

= Observability is “a measure of how well internal
states of a system can be inferred from knowledge of
its external outputs” [Wikipedia]

= Software Observability:

» A set of end-to-end techniques and processes that
allow us to reason about what a software system
IS doing and why by analyzing its external outputs.

Monitoring vs Observability

= Monitoring:
= Tracks known metrics and raises alerts when thresholds are

not met (e.g., 4 golden signals of Google SRE: latency, traffic,
errors, and saturation)

= Answers the question: “how is the system doing?”
= Helps diagnose known problems

= Observability:
= Answers the question: “what is the system doing and why?”
= Enables to reason about the system by observing its outputs
» Helps diagnose known and unknown problems

b———"

\N \|/ I,/.l

Building Blocks

Data
Collection

P

Execution
Profile

A

.

—-{ Analytics J >

Offline and/or real-time analytics

oy cor e [11584 il et e poftcres

Operational Data

= Logs:

= Records of events generated from logging statements inserted
In the code to track system execution, errors, failures, etc.

= Different types of logs: systemlogs, application logs, event
logs, etc.

= Traces:

= Records of events showing execution flow of a service or a
(distributed) system with causal relationship

= Require additional instrumentation mechanisms

= Profiling Metrics:

= Aggregate measurements over a period of time (e.g., CPU
usage, number of user requests, etc.)

u———'

Emergence of Al for IT Operations

= AIOps is the application of Al to enhance IT operations
= An important enabler for digital transformation

Building Blocks:
= Data collection and aggregation
= Pattern recognition
» Predictive analytics
= Visualization

Applications:

» Fault detection and prediction
= Root cause analysis
= Security

Regulatory compliance
Operational intelligence

u———’

Characteristics of Logs and Traces

= Velocity: the data (in some cases) must be processed in
real time

* Volume: mountain ranges of historical data
= Variety: captured data can be structured or unstructured
= Veracity: captured data must be cleaned

= Value: not all captured data is useful

Challenges

= Standards and Best Practices:

= Lack of guidelines and best practices for logging,
tracing, and profiling

» Lack of standards for representing logs, traces, and
metrics (not the OpenTelemetry initiative)

= Data Characteristics
= Mainly unstructured data
= Size is a problem

= Not all data is useful
= High velocity

u———’

Challenges

= Analytics and Tools:
= Mainly descriptive analytics
* Predictive analytics not fully explored
= Mainly offline analysis techniques
= Lack of usable end-to-end observability tools

= Cost and Management Aspects
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
= Roles and responsibilities are not well defined

u———’

Challenges

= Analytics and Tools:

m NMainh/ dacerintivia analhvdice

There is a need for systematic and engineering
approaches to software observability that promote best
practices throughout the entire software development
lifecycle

e usStL dalrtu ivialiayclliclit AspPELLS
= Cost vs. benefits not well understood
= No clear alignment of observability with other initiatives
= Roles and responsibilities are not well defined

u——f

Observability By Design

* Bringing observability to early stages of the software
development lifecycle.

= Defining a set of observability patterns, best
practices, and reusable solutions to be used as
guiding principles for developers.

= A systematic approach to tracing, logging and
profiling of software systems that considers different
phases of the software process.

u—————’

Production-Debugging Monoliths

Pre-production: Monolithic Architecture
» Robust: test your few known failure
modes

= Performant; benchmark, load, Bl sie=silayer
stress tests

= Correct: unit, integration, end-to- PARUIEIRG
end tests H

Production:

= Monitoring to detect issues (error,
latency)

* Logging to troubleshoot them

_———’

User Interface

Production-Debugging Microservices

Pre-production: -
User interface
= test each individual service

AP|
/ Gateway \
icroservice Microservice Microservice icroservice icroservice

Wide divergence

Production: (no longer replicateable)
Tracing to troubleshoot issues

Observability-Driven Development (ODD)

» |Leveraging tools and hands-
on developers to observe system
state and behavior
* |nterrogating the system, not just

setting and measuring thresholds

and metrics for it
OoDD

plan design develop test deploy operate

From TDD to ODD

Write Define

Test) Outcome
Test Driven ‘ Observability Driven
Development Development
P Change & Measure
Refactor T:;S Measure Outcome

N’

\/

Observability-Driven Development (ODD)

/. Determining what to » Standardization of the h
observe based on Quality instrumentation
of Service and KPIs to be ¢ Adding sufficient context
met for getting better insight
e Identifying where to ¢ Implementing at
observe and designing in framework level
such a way to make
_ instrumentation easy
4

-

* Following ‘Observability as
Code’ practice to enforce
observability as part of
Continuous Deployment
process.

¢ Observing for unusual

_ , behaviour at an early stage
through automation

* Proactive monitoring and
querying

* Feedback loop from the
observations to
development team

e ——

Observability-Driven Development (ODD)

_ What you can control

API
/ Gateway \

Database Database Database Database Database

Observability-Driven Development (ODD)

Responsibility

Observability:
Shrink This Gap

Control

-
Complexity

From Telemetry to Observability

= Observability is often equated with telemetry

* "If you have metrics, logs, and traces, then you have
Observability"

= Observability, is the process of deriving value
telemetry

= Telemetry is important but not sufficient

.......

l"

= ———

AP|
/ Gateway \

Database

= . ddd. L

1. #include <stdio.h>
2.

3. int main(void)

= 4.

® Add 5. printf(“Hello, world\n”);

; ; 6. pipe0;
instrumentation D6 pipe0 ;

l 8.}
| f ;
I
Logs

=

Appender Log

Storage

Instrumented Code

| HAVE'ABSOLUTELY

Error
242

1302

Metrics

| HAVE'ABSOLUTELY

Error
242

1302

L)

Gt st by D Prbio b) e

bt i)

m‘___.ﬁm} h“ﬂ: e mmonn i N Mo . .
— Which requests lead to that error or

that status?

Metrics

- e —

TR

crpj

) A

Traces provide Context

API
/ Gateway \

Database Database

Database Database

Database

—r_;_._;-% ~— Which requests lead to that error or

Metrics that status?

Context

= Context connects everything!

User Triggered Frontend Action

- Action identifier - User loading status updated - Action Outcorme Metadata
= Frontend Metadata I:e.g. wearsion, pugef’rcute]
- User Metadata [eg. Dy, product Elan, device, location)

Backend AP| Call Backend Call Page 1 Backend Call Page 2
O Grers) Ee-Q Q@ GO0
- Backend Metadato I:u,-;], endpoint, host, container o) - Success - BE Metodatao - Count poge - BE Metadaota = Count page
Database Call External Service Call Make Response Database Query Database Query
OED—CDO OED—(D00—0
- Count call - BB call i sount call - Response info - Connection estoblished - Connection established
Database Query External Service Execution

Q-0

- Connection established

Distributed Tracing

= Trace - a trace is a tree of
spans that follows the course

of a request or system from | A
ItS source to its ultimate B
destination. TRARE |

» Each trace is a narrative that .

tells the requests story as it
travels through the system.

SPANS

Distributed Tracing

= Span - are logical units of
work in a distributed system.
They all have a name, a start
time, and a duration.

= Each Span captures
Important data points specific
to the current process
handling the request. Tracp 4 i

Back-Office-Microservice
Traceld: 1, ParentId: 1, Spanid: 2

/)

Customer-Microservice Account-Microservice
Trace ld: 1, ParentId : 2, Span Id : 4 Traceld: 1, ParentId : 2, Span Id : 5

Instrumentation

File Edit Selection View Go Debug Terminal Help server.js - http - Visual Studio Code

IS serverjs X 5

JS server

opentelemetry = require('@opentelemetry
config = require('./setup');
config.setupTracerAndExporters('http-serve

http = require('http');
tracer = opentelemetry.getTracer();

startServer (port) {
server = http.createServer(handleRequest);
server.listen(port, err {

if (err) {
t | err;

}
onsole.log(Nod

1)

handleRequest (request, response) {
currentSpan = tracer.getCurrentSpan();
vle.log(traceid: ${currentSpan.context().traceld});
span = tracer.startSpan('handleRequest’, {
parent: currentSpan,
kind: 1,
attributes: { key:'

1)

Instrumentation

Eile Edit Selection View Go Debug Terminal Help clientjs - http - Visual Studio Code

15 clientjs bt

opentelemetry = require(’@opentelemetry/core’);
config = require(’./setup’);
config.setupTracerAndExporters('http-client-service');

http = require(http");

makeRequest() {
http.get({
host: 'localhost',
port: 868a,
path: '/helloworld®
}» (response) {
body = [];
response.on(‘data’, chunk body.push({chunk));
response.on(‘end’, () 1
console.log(body.toString());
1
1)

console.log('Sleeping 5 seconds before shutdown to ensure a
setTimeout(() { console. Completed.'); }, 5@ee);

makeRequest();

Visualization

Jaeger Ul Search Compare |-'"='|-:':'T'IIL‘|E'I'!.ii='5 ——

< w http-client-service: GET /helloworld ¥ Trace Timeline
February 6 2020, 10:44 217s 2 3 3
r 5 2.1
Service & Operation wor oW oB Oms 542 21ms 1.08s 1.63s 2.1
e I hitp-client-service GET helowond |

~ hilp-server-service

hilp-server-service handisfaguas: |

A Standard Way?

= Tracing libs in Project X do not handoff to tracing libs
In Project Y

= Tracing semantics must not be language dependent
* |nstrumentation must be decoupled from vendors .

InfraHost/'VM/Pod/Container

I Application
~ Logging @ Tracing | Metric
libraries libraries libraries

u——'

OpenTelemetry

; . &
= OpenCensus: @ e ‘

= Provides APIs and instrumentation that allow you to collect
application metrics and distributed tracing.

* Provides oc-service and oc-agent middleware.
= OpenTracing:

= Provides APIs for distributed tracing with implementations
provided by tracing backend vendors

* OpenTelemetry:

= An effort to combine distributed tracing, metrics and logging
Into a single set of system components and language-
specific libraries

_———”

OpenTelemetry

= Vendor-neutral telemetry

AT X
N

Telemetry
Backend

4

= |nstrumentation

. P RECLR

= Changes to the application (source code or configuration)

= "With great instrumentation comes great observabi
= Data pipeline
* Visualization & Analytics

u———’

lity."

Metric Analysis & Visualization

Grafana
Prometheus

Kibana

3 584811 31447 s3.4a02k

— et -

60872 : — —
s = =

134433 - - [[——

7.5 min =

https://grafana.com/
Target Serve
O \—) 'f'\
e [|
Prometheus Grafana
PPPPPP heus 1‘
¢ o

https://prometheus.io/docs/visualization/grafana/

Q> E>E> R

https://www.elastic.co/guide/en/kibana

Observability Culture

= Observability in action!

= Before and after a problem,
= Data-driven decision making
= Educate team

* Encourage standard tools/techniques
* Log formatting
= Metric conventions
= Practice, share success stories, and feedback

= Measure your progress and observer your
observability culture!

u———’

Contact Information

Wahab Hamou-Lhadj, PhD, ing.
Concordia University ‘,,-r Cﬂ' n Eﬂ r d i o

wahab.hamou-lhadj@concordia.ca
http://www.ece.concordia.ca/~abdelw

Naser Ezzati-Jivan, PhD
Brock University

nezzatijivan@brocku.ca BrOCk

University

http://www.cosc.brocku.ca/~nezzatijivan/

